Part Number Hot Search : 
3843AM 1N524 TPSMB11 SG2731J 0B103 ULN2003A 02010 19G0B01
Product Description
Full Text Search
 

To Download IRFHE4250D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  fast ir fet? IRFHE4250Dpbf 1 www.irf.com ? 2013 international rectifier september 26, 2013 hexfet ? power mosfet base part number package type standard pack orderable part number ? ? form quantity IRFHE4250Dpbf dual pqfn 6mm x 6mm tape and reel 4000 IRFHE4250Dtrpbf q1 q2 v dss 25 25 v r ds(on) max (@v gs = 4.5v) 4.10 1.35 m ? ? ? qg (typical) 13 ? 35 nc i d (@t c = 25c) 60 ? 60 ? a features benefits control and synchronous mosfets in one package increased power density low charge control mosfet (13nc typical) results in lower switching losses low r dson synchronous mosfet (<1.35m ? ) ? lower conduction losses rohs compliant, halogen-free environmentally friendlier msl2, industrial qualification increased reliability intrinsic schottky diode with low forward voltage on q2 lower switching losses low thermal resistance path to the top increased power density low thermal resistance path to the pcb increased power density notes ? through ? are on page 12 absolute maximum ratings ?? parameter q1 max. q2 max. units v gs gate-to-source voltage 16 ? v i d @ t c = 25c continuous drain current, v gs @ 10v 86 ?? 303 ?? a i d @ t c = 70c continuous drain current, v gs @ 10v 69 ?? 243 ?? i d @ t c = 25c continuous drain current (source bonding technology limited) 60 ? 60 ? i dm pulsed drain current 180 525 ? p d @t c = 25c power dissipation 156 156 w p d @t c = 70c power dissipation 100 100 linear derating factor 1.3 1.3 w/c t j operating junction and c t stg storage temperature range -55 to + 150 applications ?? control and synchronous mosfets for synchronous buck converters ? ? dual pqfn 6x6 mm ? thermal resistance ??? parameter q1 max. q2 max. units r ? jc (bottom) junction-to-case ? 3.7 r ? jc (top) junction-to-case ? 0.91 c/w r ? ja junction-to-ambient ? 24 r ? ja (<10s) junction-to-ambient ? 17 0.91 2.1 24 17 downloaded from: http:///
? IRFHE4250Dpbf 2 www.irf.com ? 2013 international rectifier september 26, 2013 static @ t j = 25c (unless otherwise specified) ???? ? parameter min. typ. max. units conditions bv dss drain-to-source breakdown voltage q1 25 CCC CCC v v gs = 0v, i d = 250a q2 25 CCC CCC v gs = 0v, i d = 1.0ma ? bv dss / ? t j breakdown voltage temp. coefficient q1 CCC 23 CCC mv/c reference to 25c, i d = 1.0ma q2 CCC 21 CCC reference to 25c, i d = 10ma q1 CCC 2.20 2.75 v gs = 10v, i d = 27a ? r ds(on) static drain-to-source on-resistance q2 CCC 0.70 0.90 m ? v gs = 10v, i d = 27a ? q1 CCC 3.20 4.10 v gs = 4.5v, i d = 27a ? q2 CCC 1.00 1.35 v gs = 4.5v, i d = 27a ? v gs(th) gate threshold voltage q1 1.1 1.6 2.1 v q1: v ds = v gs , i d = 35a q2 1.1 1.6 2.1 q2: v ds = v gs , i d = 100a ? v gs(th) / ? t j gate threshold voltage coefficient q1 CCC -5.8 CCC mv/c q1: v ds = v gs , i d = 35a q2 CCC -7.8 CCC q2: v ds = v gs , i d = 1.0ma i dss drain-to-source leakage current q1 CCC CCC 1.0 a v ds = 20v, v gs = 0v q2 CCC CCC 500 v ds = 20v, v gs = 0v i gss gate-to-source forward leak age q1/q2 CCC CCC 100 na v gs = 16v gate-to-source reverse leakage q1/q2 CCC CCC -100 v gs = -16v gfs forward transconductance q1 73 CCC CCC s v ds = 10v, i d = 14a q2 121 CCC CCC v ds = 10v, i d = 23a q g total gate charge q1 CCC 13 20 q2 CCC 35 53 q gs1 pre-vth gate-to-source charge q1 CCC 3.6 CCC q1 q2 CCC 8.6 CCC v ds = 13v q gs2 post-vth gate-to-source charge q1 CCC 1.3 CCC v gs = 4.5v, i d = 13a q2 CCC 3.8 CCC nc q gd gate-to-drain charge q1 CCC 5.2 CCC q2 q2 CCC 13 CCC v ds = 13v q godr gate charge overdrive q1 CCC 2.9 CCC v gs = 4.5v, i d = 23a q2 CCC 9.6 CCC q sw switch charge (q gs2 + q gd ) q1 CCC 6.5 CCC q2 CCC 16.8 CCC q oss output charge q1 CCC 14 CCC nc v ds = 16v, v gs = 0v q2 CCC 41 CCC r g gate resistance q1 CCC 0.5 CCC ?? q2 CCC 0.4 CCC t d(on) turn-on delay time q1 CCC 11 CCC q1 q2 CCC 17 CCC v ds = 13v v gs = 4.5v t r rise time q1 CCC 33 CCC i d = 14a, rg = 1.8 ? q2 CCC 54 CCC ns t d(off) turn-off delay time q1 CCC 14 CCC q2 q2 CCC 24 CCC v ds = 13v v gs = 4.5v t f fall time q1 CCC 12 CCC i d = 23a, rg = 1.8 ? q2 CCC 16 CCC c iss input capacitance q1 CCC 1735 CCC q2 CCC 4765 CCC v gs = 0v c oss output capacitance q1 CCC 493 CCC pf v ds = 13v q2 CCC 1577 CCC ? = 1.0mhz c rss reverse transfer capacitance q1 CCC 137 CCC q2 CCC 370 CCC downloaded from: http:///
? IRFHE4250Dpbf 3 www.irf.com ? 2013 international rectifier september 26, 2013 avalanche characteristics ??? parameter q1 max. q2 max. units e as single pulse avalanche energy ? 71 ? 481 ? mj i ar avalanche current ? 32 63 a typ. CCC CCC diode characteristics ????? ? parameter min. typ. max. units conditions i s continuous source current q1 CCC CCC 60 ? a mosfet symbol (body diode) q2 CCC CCC 60 ? showing the i sm pulsed source current q1 CCC CCC 180 a integral reverse (body diode) q2 CCC CCC 525 ? p-n junction diode. v sd diode forward voltage q1 CCC 0.77 0.88 v t j = 25c, i s = 14a, v gs = 0v ? q2 CCC 0.60 0.75 t j = 25c, i s = 27a, v gs = 0v ? t rr reverse recovery time q1 CCC 19 29 ns q1 t j = 25c, i f = 30a q2 CCC 34 51 v dd = 13v, di/dt = 200a/s ? q rr reverse recovery charge q1 CCC 16 24 nc q2 t j = 25c, i f = 30a q2 CCC 54 81 v dd = 13v, di/dt = 200a/s ? downloaded from: http:///
? IRFHE4250Dpbf 4 www.irf.com ? 2013 international rectifier september 26, 2013 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 150c 2.75v vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.25v 3.0v bottom 2.75v fig 1. typical output characteristics 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 15v ? 60s pulse width fig 5. typical transfer characteristics fig 3. typical output characteristics fig 2. typical output characteristics q1 - control fet q2 - synchronous fet 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 150c 2.5v vgs top 10v 4.5v 4.0v 3.5v 3.25v 3.0v 2.75v bottom 2.5v fig 4. typical output characteristics 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 15v ? 60s pulse width fig 6. typical transfer characteristics 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.25v 3.0v bottom 2.75v ? 60s pulse width tj = 25c 2.75v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 4.5v 4.0v 3.5v 3.25v 3.0v 2.75v bottom 2.5v ? 60s pulse width tj = 25c 2.5v downloaded from: http:///
? IRFHE4250Dpbf 5 www.irf.com ? 2013 international rectifier september 26, 2013 q1 - control fet q2 - synchronous fet 0 5 10 15 20 25 30 35 40 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v v ds = 13v i d = 30a 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss fig 7. typical capacitance vs. drain-to-source voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 102030405060708090100 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v v ds = 13v i d = 30a fig 8. typical capacitance vs. drain-to-source voltage fig 9. typical gate charge vs . gate-to-source voltage fig 10. typical gate charge vs. gate-to-source voltage 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc limited by package fig 11. maximum safe operating area 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc limited by package fig 12. maximum safe operating area downloaded from: http:///
? IRFHE4250Dpbf 6 www.irf.com ? 2013 international rectifier september 26, 2013 fig 13. normalized on-resistance vs. temperature 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 2 4 6 8 10 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 23a t j = 25c t j = 125c fig 17. typical on-resistance vs. gate voltage 0.4 0.5 0.6 0.7 0.8 0.9 1.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 27a v gs = 4.5v fig 15. typical source-drain diode forward voltage q1 - control fet q2 - synchronous fet -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 27a v gs = 4.5v fig 14. normalized on-resistance vs. temperature 0.2 0.4 0.6 0.8 1.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v fig 16. typical source-drain diode forward voltage 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 27a t j = 25c t j = 125c fig 18. typical on-resistance vs. gate voltage downloaded from: http:///
? IRFHE4250Dpbf 7 www.irf.com ? 2013 international rectifier september 26, 2013 -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 35a 25 50 75 100 125 150 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) limited by package fig 19. maximum drain current vs. case temperature 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.6a 15a bottom 32a fig 21. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0ma 25 50 75 100 125 150 t c , case temperature (c) 0 50 100 150 200 250 300 350 i d , d r a i n c u r r e n t ( a ) limited by package fig 20. maximum drain current vs. case temperature 25 50 75 100 125 150 starting t j , junction temperature (c) 0 500 1000 1500 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 18a 33a bottom 63a fig 22. threshold voltage vs. temperature fig 23. maximum avalanche energy vs. drain current fig 24. maximum avalanche energy vs. drain current q1 - control fet q2 - synchronous fet downloaded from: http:///
? IRFHE4250Dpbf 8 www.irf.com ? 2013 international rectifier september 26, 2013 1e-007 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 25. maximum effective transient thermal impedance, junction-to-case (q1) fig 26. maximum effective transient thermal impedance, junction-to-case (q2) fig 27. single avalanche event: pulse current vs. pulse width (q1) 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse) downloaded from: http:///
? IRFHE4250Dpbf 9 www.irf.com ? 2013 international rectifier september 26, 2013 fig 28. single avalanche event: pulse current vs. pulse width (q2) 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse) downloaded from: http:///
? IRFHE4250Dpbf 10 www.irf.com ? 2013 international rectifier september 26, 2013 fig 29. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 32a. gate charge test circuit vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 32b. gate charge waveform fig 30a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as fig 30b. unclamped inductive waveforms fig 31a. switching time test circuit fig 31b. switching time waveforms vdd ? downloaded from: http:///
? IRFHE4250Dpbf 11 www.irf.com ? 2013 international rectifier september 26, 2013 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ dual pqfn 6x6 outline package details for more information on board mounting, including footprint and stencil recommendation, please refer to application note an-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf for more information on package inspection techni ques, please refer to application note an-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf downloaded from: http:///
? IRFHE4250Dpbf 12 www.irf.com ? 2013 international rectifier september 26, 2013 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ notes: ? repetitive rating; pulse width limited by max. junction temperature. ? starting t j = 25c, q1: l = 0.14 mh, r g = 50 ? , i as = 32a; q2: l = 0.24 mh, r g = 50 ? , i as = 63a. ? pulse width 400s; duty cycle 2%. ? r ? is measured at t j approximately 90c. ? when mounted on 1 inch square pcb (fr-4). please refer to an-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf ? calculated continuous current based on ma ximum allowable junction temperature. ? current is limited to q1 = 60a & q2 = 60a by source bonding technology. ? pulsed drain current is limited to 240a by source bonding technology. qualification information ? ? qualification level industrial (per jedec jesd47f ?? guidelines ) moisture sensitivity level dual pqfn 6mm x 6mm msl2 (per jedec j-std-020d ??) rohs compliant yes ? qualification standards can be found at international rectifiers web site http://www.irf.com/product-info/reliability ?? applicable version of jedec standar d at the time of product release. dual pqfn 6x6 outline tape and reel note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFHE4250D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X